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Lecture 6A. 4-node QUAD element

Finite element method
(FEM1)
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Geometry mapping:      (𝜉, 𝜂) → (𝑥, 𝑦)

4-node QUAD element

𝑢

𝑣

𝑢2

𝑣2

cartesien coordinate systemnatural coordinate system
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vectors of nodal coordinates

𝑛 = 4   ; 𝑛𝑝 = 2 → 𝑛𝑒 = 𝑛 ∙ 𝑛𝑝 = 8

𝑥𝑖 𝑒 =

𝑥1
𝑥2
𝑥3
𝑥4

; 𝑦𝑖 𝑒=

𝑦1
𝑦2
𝑦3
𝑦4

4 × 1 4 × 1

local vector of nodal parameters:

𝑞 𝑒 =

𝑞1
𝑞2
.
.
.
𝑞8 𝑒

=

𝑢1
𝑣1
.
.
.
𝑣4 𝑒

8 × 1

𝑖

Isoparametric mapping

𝒖𝟐

𝒗𝟐
𝒖𝟏

𝒗𝟏

𝒖𝟒

𝒗𝟒
𝒖𝟑

𝒗𝟑

Isoparametric mapping – the same 
functions are used to describe the 

geometry and displacements
𝑥𝑖

𝑦𝑖
𝑢𝑖

𝑣𝑖
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Isoparametric mapping

constant

let's construct shape functions:
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Shape functions of a 4-node element

𝑁1 𝜉, 𝜂 = ¼ 1 − 𝜉 1 − 𝜂
𝑁2 𝜉, 𝜂 = ¼ 1 + 𝜉 1 − 𝜂
𝑁3 𝜉, 𝜂 = ¼ 1 + 𝜉 1 + 𝜂
𝑁4 𝜉, 𝜂 = ¼ 1 − 𝜉 1 + 𝜂
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Isoparametric mapping

position and displacement 
of any point

where:

Isoparametric mapping – the same 
functions are used to describe the 

geometry and displacements
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Differential operators in the natural system

Differential operators in the Cartesian coordinate system

Jacobi matrix
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(discrete 
values)
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Gradient matrix for Plain stress or Plain strain condition

Vector of strain components (Plain stress and Plain strain)

Vector of stress components (Plain stress and Plain strain)
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(numerical integration)

where:

Elastic strain energy in a finite element
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Splitting the elastic strain energy into that due to normal stresses and that due to shear stresses
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where:

The stiffness matrix related to linear strains

Stiffness matrix related to shear strains

Splitting the elastic strain energy into that due to normal stresses and that due to shear stresses
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Example 4-node quadrilateral element
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Strain-displacement matrix:
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Strain-displacement matrix:

The matrix contains linear terms with respect to the natural coordinates
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Strain-displacement matrix :
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Case 1. Let's consider the "Bending" deformation in the 4node element

Vector of nodal parameters:

For the top layer we have: x= - 0.5·10-3

x

y
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Beam theory: Pure beam bending (no shear)

For  y=1.5 mm we have x= - 0.5·10-3
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Components of strain in the element:

Shear strains!!?

Cont. Case 1. "Bending" in 4-node element
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Stress components in the element:
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It came out 
a little more
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Strain and stress components at the center (point C):

There is no strain or stress at the center point!
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If we calculate the strains in an element from the strain-displacement matrix:

We will calculate the components of the stress state using the matrix of elastic constants:
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Numerical integration n=1

Let’s use numerical integration with one Gaussian point

Let's calculate the elastic strain energy in the element:

Energy 
comes out 0 !
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Let's try to calculate the elastic strain energy of the element again in a different way:

It's zero 
again!

As we can see, the elasticstrain
energy due to normal and 
shear stress is zero.
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Numerical integration n=2

We use numerical integration with two Gaussian points

It came out differently!
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Let's try to calculate the elastic strain energy of the element again differently (separately 
for normal stress and separately for shear stress):

Elastic strain energy due to normal stress

Elastic strain energy due to shear stress
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Elastic strain energy (comparison for different numbers of integration points)

Numerical integration

Zero energy mode („hourglassing” ) The element is more rigid 
(„shear locking” )

Nonzero 
shear stress 
energy!



35

Case 2. Let's consider the "Shear" deformation

Estimation of strain and stress state:
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Let's calculate the strains in the element from the strain-displacement matrix:

- constant

We will calculate the components of the stress state using the matrix of elastic constants:

- constant
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Elastic strain energy (comparison for different numbers of integration points)

The value is identical regardless 
of the number of Gauss points

Numerical integration
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Case 3. Let's consider the deformation "Bending + Shear"(superposition 1+2) 
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Let's calculate the strains in the element from the strain-displacement matrix:

We will calculate the components of the stress state using the matrix of elastic constants:
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Elastic strain energy (comparison for different numbers of integration points)

„shear locking”

Numerical integration
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Summary

„shear locking”„hourglassing”
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(element 
technology)

What to do to improve results?

Full integration Reduced integration

𝐶𝑜𝑛𝑠𝑙𝑢𝑠𝑖𝑜𝑛𝑠:
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Mixed quadrature rule

Full integration (𝑛 = 2) :

Reduced integration (𝑛 = 1) :
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− shear locking:

Rozwiązanie
analityczne

FE model with 
shear locking

− hourgalssing:

− volumetric locking in nearly incompressible materials
(𝜈  0.5)
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(+additional shape features)

Element Stress State Poisson's ratio <= 0.49
Poisson's ratio > 0.49

(or anisotropic materials)

PLANE182

Plane stress
KEYOPT(1) = 2

(Enhanced strain formulation)

KEYOPT(1) = 2

(Enhanced strain formulation)

Not plane stress

KEYOPT(1) = 3

(Simplified enhanced strain 

formulation)

KEYOPT(1) = 2

(Enhanced strain formulation)

PLANE183

Plane stress No change No change

Not plane stress No change No change

SOLID185

KEYOPT(2) = 3

(Simplified enhanced strain 

formulation)

KEYOPT(2) = 2

(Enhanced strain formulation)

SOLID186
KEYOPT(2) = 0

(Uniform reduced integration)

KEYOPT(2) = 0

(Uniform reduced integration)

SHELL281 No change No change

Element Technology – Linear Materials
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https://moodle.umontpellier.fr/pluginfile.php/480056/mod_resource/content/0/Sun-
ShearLocking-Hourglassing.pdf

https://moodle.umontpellier.fr/pluginfile.php/480056/mod_resource/content/0/Sun-ShearLocking-Hourglassing.pdf
https://moodle.umontpellier.fr/pluginfile.php/480056/mod_resource/content/0/Sun-ShearLocking-Hourglassing.pdf
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